Inside the adult ADHD brain

Posted on June 13, 2014

At left, the brains of adults who had ADHD as children but no longer have it show synchronous activity between the posterior cingulate cortex (the larger red region) and the medial prefrontal cortex (smaller red region). At right, the brains of adults who continue to experience ADHD do not show this synchronous activity.

About 11 percent of school-age children in the United States have been diagnosed with attention deficit hyperactivity disorder (ADHD). While many of these children eventually "outgrow" the disorder, some carry their difficulties into adulthood: About 10 million American adults are currently diagnosed with ADHD.

In the first study to compare patterns of brain activity in adults who recovered from childhood ADHD and those who did not, MIT neuroscientists have discovered key differences in a brain communication network that is active when the brain is at wakeful rest and not focused on a particular task. The findings offer evidence of a biological basis for adult ADHD and should help to validate the criteria used to diagnose the disorder, according to the researchers.

Diagnoses of adult ADHD have risen dramatically in the past several years, with symptoms similar to those of childhood ADHD: a general inability to focus, reflected in difficulty completing tasks, listening to instructions, or remembering details.

"The psychiatric guidelines for whether a person's ADHD is persistent or remitted are based on lots of clinical studies and impressions. This new study suggests that there is a real biological boundary between those two sets of patients," says MIT's John Gabrieli.

The researchers used a technique called resting-state functional magnetic resonance imaging (fMRI) to study what the brain is doing when a person is not engaged in any particular activity. These patterns reveal which parts of the brain communicate with each other during this type of wakeful rest.

In people without ADHD, when the mind is unfocused, there is a distinctive synchrony of activity in brain regions known as the default mode network. Previous studies have shown that in children and adults with ADHD, two major hubs of this network - the posterior cingulate cortex and the medial prefrontal cortex - no longer synchronize.

In the new study, the MIT team showed for the first time that in adults who had been diagnosed with ADHD as children but no longer have it, this normal synchrony pattern is restored. "Their brains now look like those of people who never had ADHD," Mattfeld says.

"This finding is quite intriguing," says Francisco Xavier Castellanos, a professor of child and adolescent psychiatry at New York University who was not involved in the research. "If it can be confirmed, this pattern could become a target for potential modification to help patients learn to compensate for the disorder without changing their genetic makeup."


Category(s):Adult ADHD, Attention Deficit Hyperactivity Disorder (ADHD)

Source material from MIT