A new University of British Columbia study identifies an important molecular change that occurs in the brain when we learn and remember.
Published this month in Nature Neuroscience, the research shows that learning stimulates our brain cells in a manner that causes a small fatty acid to attach to delta-catenin, a protein in the brain. This biochemical modification is essential in producing the changes in brain cell connectivity associated with learning, the study finds.
"More work is needed, but this discovery gives us a much better understanding of the tools our brains use to learn and remember, and provides insight into how these processes become disrupted in neurological diseases," says co-author Shernaz Bamji, an associate professor in UBC’s Life Sciences Institute.
"Brain activity can change both the structure of this protein, as well as its function," says Stefano Brigidi, first author of the article and a PhD candidate Bamji's laboratory. "When we introduced a mutation that blocked the biochemical modification that occurs in healthy subjects, we abolished the structural changes in brain's cells that are known to be important for memory formation."
Source material from University of British Columbia