This brain scan from Kana’s study shows weaker neural connectivity in participants with autism compared with participants without autism.
Joint research from the University of Alabama at Birmingham Department of Psychology and Auburn University indicates that brain scans show signs of autism that could eventually support behavior-based diagnosis of autism and effective early intervention therapies. The findings appear online today in Frontiers in Human Neuroscience as part of a special issue on brain connectivity in autism.
“This research suggests brain connectivity as a neural signature of autism and may eventually support clinical testing for autism,” said Rajesh Kana, Ph.D., associate professor of psychology and the project’s senior researcher. “We found the information transfer between brain areas, causal influence of one brain area on another, to be weaker in autism.”
The investigators found that brain connectivity data from 19 paths in brain scans predicted whether the participants had autism, with an accuracy rate of 95.9 percent.
The current study showed that adults with autism spectrum disorders processed social cues differently than typical controls. It also revealed the disrupted brain connectivity that explains their difficulty in understanding social processes.
“We can see that there are consistently weaker brain regions due to the disrupted brain connectivity,” Kana said. “There’s a very clear difference.”
Autism is currently diagnosed through interviews and behavioral observation. Although autism can be diagnosed by 18 months, in reality, earliest diagnoses occur around ages 4-6 as children face challenges in school or social settings.
“Parents usually have a longer road before getting a firm diagnosis for their child now,” Kana said. “You lose a lot of intervention time, which is so critical. Brain imaging may not be able to replace the current diagnostic measures; but if it can supplement them at an earlier age, that’s going to be really helpful.”
Category(s):Autism spectrum disorders
Source material from University of Alabama at Birmingham