Study Shows How Infections in Newborns are Linked to Later Behavior Problems

Posted on October 21, 2013

Researchers exploring the link between newborn infections and later behavior and movement problems have found that inflammation in the brain keeps cells from accessing iron that they need to perform a critical role in brain development.

Specific cells in the brain need iron to produce the white matter that ensures efficient communication among cells in the central nervous system. White matter refers to white-colored bundles of myelin, a protective coating on the axons that project from the main body of a brain cell.

The scientists induced a mild E. coli infection in 3-day-old mice. This caused a transient inflammatory response in their brains that was resolved within 72 hours. This brain inflammation, though fleeting, interfered with storage and release of iron, temporarily resulting in reduced iron availability in the brain. When the iron was needed most, it was unavailable, researchers say.

“What’s important is that the timing of the inflammation during brain development switches the brain’s gears from development to trying to deal with inflammation,” said Jonathan Godbout, associate professor of neuroscience at The Ohio State University and senior author of the study. “The consequence of that is this abnormal iron storage by neurons that limits access of iron to the rest of the brain.”

Though other researchers have observed links between newborn infections and effects on myelin and behavior, scientists had not figured out why those associations exist. Godbout’s group focuses on understanding how immune system activation can trigger unexpected interactions between the central nervous system and other parts of the body.

“We’re not the first to show early inflammatory events can change the brain and behavior, but we’re the first to propose a detailed mechanism connecting neonatal inflammation to physiological changes in the central nervous system,” said Daniel McKim, a lead author on the paper and a student in Ohio State’s Neuroscience Graduate Studies Program.

Though it’s unknown if these movement problems would last a lifetime, McKim noted that “since these impairments lasted into what would be young adulthood in humans, it seems likely to be relatively permanent.”

The reduced myelination linked to movement and behavior issues in this study has also been associated with schizophrenia and autism spectrum disorders in previous work by other scientists, said Godbout, also an investigator in Ohio State’s Institute for Behavioral Medicine Research (IBMR).

“More research in this area could confirm that human behavioral complications can arise from inflammation changing the myelin pattern. Schizophrenia and autism disorders are part of that,” he said.


Category(s):Child and/or Adolescent Issues, Pregnancy & Birthing

Source material from The Ohio State University


Mental Health News

  • Who Can You Trust?

    newsthumbHow do you know who you can trust? A recent experiment suggests that an individual’s guilt-proneness is one of the strongest predictor of one’s ...

  • Recalling Emotional Memories

    newsthumbWith the recent media focus on the Kavanaugh-Ford scandal, questions regarding recall and memory have surfaced. A special form of memory is ...

  • To what extent is it Emotional Abuse?

    newsthumbThis article helps us identify what is deemed as emotional abuse, when and how is an action or situation a form of emotional abuse.